Signatures of finite exceptional Lie algebra representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 276403
(http://iopscience.iop.org/0305-4470/27/19/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:16

Please note that terms and conditions apply.

Signatures of finite exceptional Lie algebra representations

Alexander N Rudy
Department of Mathematics, Belarussian State Polytechnical Academy, Scarina av., 65, Minsk, Republic of Belarus

Received I3 June 1994

Abstract

The paper deals with the real exceptional Lie algebras of types $E_{1}, i=6,7,8$ and their arbitrary irreducible representations. Hermitian forms which are invariant relative to these representations are considered. Signature formulas for these forms are obtained.

1. Introduction

Let \mathfrak{g} be the simple complex Lie algebra and let \mathfrak{g}_{σ} be any real form of inner type for \mathfrak{g}. Consider an irreducible representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{s l}(V)$. From [1] it follows that $\varphi\left(\mathfrak{g}_{\sigma}\right) \subset \mathfrak{s u}(p, q)$, where $p+q=\operatorname{dim} V$. Let $\delta=p-q$. So δ is a signature, i.e. the difference between the number of positive and negative signs in the bilinear invariant in its diagonal form. Furthermore $p=\frac{1}{2}(\operatorname{dim} V+\delta)$ and $q=\frac{1}{2}(\operatorname{dim} V-\delta)$. Hence it is possible to find the number of linearly independent spacelike or timelike vectors in representation space. In [1-5] formulas for δ were given in terms of the highest weight. Lie algebras of types G_{2}, F_{4} were considered in [2] and [4]. As follows from this paper, it is possible to obtain simple δ formulas in the case of real Lie algebras of types $E_{i}, i=6,7,8$.

The finite-dimensional representations which are used in theoretical physics are mostly low-dimensional, nevertheless the interest in general methods still grows [5].

2. Definitions

Definitions used in this paper coincide with those in [4]. Let \boldsymbol{g}_{τ} be the fixed compact real form of the algebra g and let τ be the conjugation of the algebra \mathfrak{g} with respect to \mathfrak{g}_{τ}. Consider an involution θ of the algebra \mathfrak{g} such that $\theta\left(\mathbf{g}_{\tau}\right)=\mathfrak{g}_{\tau}$. Let $\sigma=\tau \circ \theta=\theta \circ \tau$. Denote by \mathfrak{g}_{σ} the real form of the algebra \mathfrak{g} such that σ is a conjugation of the algebra \mathfrak{g} with respect to \mathfrak{g}_{σ}. The real form \boldsymbol{g}_{σ} is called the real form of inner type if $\theta \in \operatorname{Int}\left(\mathfrak{g}_{\tau}\right)$. Suppose \boldsymbol{t} is a Cartan subalgebra of \mathfrak{g}_{τ} such that $\theta(\mathbf{t})=\mathbf{t}, \mathfrak{h}$ is a Cartan subalgebra of \mathfrak{g} such that $\mathbf{t}^{\mathfrak{C}}=\mathfrak{h}, R$ is a root system associated with the pair $(\mathbf{g}, \mathfrak{h})$. Let $B($,$) be a$ Killing form of \mathbf{g}, and let $()=,\left(-1 /(2 \pi)^{2}\right) B($,$) be a positive definite scalar product$ on \mathbf{t}. Let $\alpha \in R$; by H_{α} denote an element of \mathfrak{h} such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for all $H \in \mathfrak{h}$. Define the embedding $\psi: R \rightarrow \mathbf{t}$ by $\psi(\alpha)=(2 \pi \sqrt{-1}) H_{\alpha}$ for all $\alpha \in R$. Suppose $\Pi=$ $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is a set of the simple roots of $R,\left\{H_{i}\right\}_{i=1}^{r}$ is the basis of t such that $\left(H_{i}, \alpha_{j}\right)=\delta_{i j}, i, j=1, \ldots, r$. If $\theta \in \operatorname{Int}\left(\mathfrak{g}_{\tau}\right)$, then without loss of generality,
$\theta=\exp \left(\operatorname{ad}\left(H_{i s} \prime^{\prime} 2\right)\right)$ for some $i_{0}, 1 \leqslant i_{0} \leqslant r[6]$. Let R^{\vee} be the root system dual to R, that is

$$
R^{v}=\left\{\left.\frac{2 \alpha}{(\alpha, \alpha)} \right\rvert\, \alpha \in R\right\}
$$

Suppose W is a Weyl group of R, and $P\left(R^{\vee}\right)$ is a group of weights for R^{\vee} [7], where $P\left(R^{v}\right)$ is generated by the elements $\left\{H_{i}\right\}_{i=1}^{\gamma}$ mentioned above. Let λ be the highest weight of the representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{s l}(V)$ and let χ_{λ} be the character of the representation φ. According to the Weyl character formula we have $A_{\rho}(H) \chi_{\lambda}(H)=A_{\lambda+\rho}(H)$, where

$$
A_{\lambda+\rho}(H)=\sum_{S \in W} \operatorname{det} s \exp (2 \pi \sqrt{-1}(s(\lambda+\rho), H))
$$

and

$$
\rho=\frac{1}{2} \sum_{\beta \in R, \beta>0} \beta
$$

is half the sum of the positive roots R.
Then [6]

$$
\begin{equation*}
A_{\rho}(H)=(2 \sqrt{-1})^{\prime} \prod_{\beta \in R, \beta>0} \sin (\pi(\beta, H)) \tag{1}
\end{equation*}
$$

where i is the number of positive roots. Denote by $\omega_{l}, i=1, \ldots$, rang (\mathfrak{g}) basis representations of the algebra \mathbf{g}, that is

$$
\frac{2\left(\omega_{i}, \alpha_{k}\right)}{\left(\alpha_{k}, \alpha_{k}\right)}=\delta_{\iota k}
$$

where $\alpha_{k} \in \Pi, i, k=1, \ldots, \operatorname{rang}(\mathfrak{g})$. In accordance with [4] we shall call elements H_{1} and $H_{2} \in \mathfrak{l}$ equivalent if there exists $s \in W$ such that $s\left(H_{1}\right)-H_{2} \in P\left(R^{\vee}\right)$ and we shall write $H_{1} \equiv H_{2}\left(\bmod P\left(R^{\vee}\right)\right)$.

Lemma 1 [4]. Let \mathfrak{g}_{σ} be a real form of simple complex algebra $\mathbf{g}, \theta=\sigma \circ \tau=$ $\exp \left(\operatorname{ad}\left(H_{10} / 2\right)\right)$ and χ_{λ} be a character of the irreducible representation $\varphi: \mathbf{g} \rightarrow \mathfrak{s l}(V)$. Then

$$
\begin{equation*}
|\delta|=\left|\chi_{\lambda}(H)\right|=\left|\lim _{t \rightarrow 1} \frac{A_{\lambda+\rho}(t H)}{A_{\rho}(t H)}\right| \tag{2}
\end{equation*}
$$

where $H \equiv H_{t 0} / 2\left(\bmod P\left(R^{\vee}\right)\right)$.

3. The case $\mathfrak{g}=E_{6}, \mathfrak{g}_{\sigma}=E \mathrm{II}$

The Dynkin diagram for E_{6} is

We shall take the roots realization from [8], that is

$$
\begin{array}{ll}
\alpha_{1}=\varepsilon_{2}-\varepsilon_{3} & a_{2}=\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}-\varepsilon_{8}\right) \tag{3}\\
\alpha_{3}=\varepsilon_{3}-\varepsilon_{4} & a_{4}=\varepsilon_{4}-\varepsilon_{5}
\end{array} a_{5}=\varepsilon_{5}-\varepsilon_{6} \quad a_{6}=\varepsilon_{6}-\varepsilon_{7} . ~ \$
$$

By symbol

$$
a c \underset{b}{d} e f
$$

denote the root $\beta=a a_{1}+b a_{2}+c a_{3}+d a_{4}+e a_{5}+f a_{6}$. Let R^{+}be the set of positive roots $\beta \in R, \beta>0$. Then

$$
\begin{aligned}
R^{+}=\left\{\varepsilon_{1}-\varepsilon_{8}\right\} & \cup\left\{\varepsilon_{i}-\varepsilon_{j} \mid 2 \leqslant i<j \leqslant 7\right\} \\
& \cup\left\{\left.\frac{1}{2}\left(\varepsilon_{1} \pm \varepsilon_{2} \pm \varepsilon_{3} \pm \varepsilon_{4} \pm \varepsilon_{5} \pm \varepsilon_{6} \pm \varepsilon_{7}-\varepsilon_{8}\right) \right\rvert\, 3 "+" \text { sign and } 3 "-" \text { sign }\right\}
\end{aligned}
$$

Let $\omega_{t}, i=1, \ldots, 6$ be basis representations of E_{6}. By symbol

denote the representation with the highest weight

$$
\lambda=\sum_{j=1}^{6} \lambda_{j} \omega_{j}
$$

The element $H=\frac{1}{2} H_{2}$ defines automorphism $\theta=\exp (\operatorname{ad} H)$. Then

$$
H_{i}=\frac{2 \omega}{\left(\alpha_{i}, \alpha_{i}\right)}=\omega_{i} \quad i=1, \ldots, 6 .
$$

Furthermore

$$
\begin{aligned}
\frac{H_{2}}{2} & \equiv \frac{H_{2}}{2}+2 H_{1}+2 H_{3}+2 H_{4}+2 H_{5}+2 H_{6}=\frac{1}{2}\left(\rho+\left(3 \rho-3 \omega_{2}\right)\right) \\
& =\frac{1}{2}\left(\rho+3\left[\begin{array}{ccccc}
7 & 13 & 18 & 13 & 7 \\
& & 9 &
\end{array}\right]\right) \\
& \equiv \frac{1}{2}\left(\rho+\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
& 1 & 1 & &
\end{array}\right]\right) \\
& \equiv \frac{1}{2}\left(\rho-7\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1
\end{array}\right]\right) \\
& =\frac{1}{2}\left(s_{\beta}(\rho)\right) \equiv \frac{1}{2} \rho\left(\bmod P\left(R^{\vee}\right)\right)
\end{aligned}
$$

where $s_{\beta} \in W$ is the reflection defined by the root

$$
\beta=\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
& & 1 & &
\end{array}\right]
$$

that is

$$
s_{\beta}(v)=v-\frac{2(\beta, v)}{(\beta, \beta)} \beta
$$

Hence from (2) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\lambda+\rho}\left(\frac{1}{2} t \rho\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right| . \tag{4}
\end{equation*}
$$

Since

$$
\rho=\frac{1}{2} \sum_{\beta \in R^{+}} \beta=\sum_{j=1}^{\sigma} \omega_{j}
$$

we have

$$
\begin{equation*}
\left|A_{\rho}\left(\frac{1}{2} t \rho\right)\right|=2^{36} \prod_{\beta \in R^{+}} \sin (\pi t(\beta, \rho)) \simeq 2^{36} 2^{9} 3^{3} 5(\pi(t-1))^{16} \tag{5}
\end{equation*}
$$

where we have kept only the lowest degree terms when $t \rightarrow 1$. Suppose

$$
X(\lambda)=\left\{\beta \mid \beta \in R^{+},\left(\beta, \frac{1}{2}(\lambda+\rho)\right) \in \mathbb{Z}\right\}, C_{\lambda}=\prod_{\beta \in X(\lambda)}\left(\beta, \frac{1}{2}(\lambda+\rho)\right) .
$$

From (1) it follows that

$$
\begin{equation*}
\left|A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)\right| \simeq 2^{36} C_{\lambda}(\pi(t-1))^{\operatorname{card}(x(\lambda))} \quad \text { when } t \rightarrow 1 \tag{6}
\end{equation*}
$$

Hence the limit in (4) depends on the value of $\operatorname{card}(X(\lambda))$. The value of $\operatorname{card}(X(\lambda))$ depends on whether $\lambda_{j}, j=1, \ldots, 6$ are even or odd. So it is necessary to consider $2^{\text {rang(g) }}$ cases to evaluate $\operatorname{card}(X(\lambda))$.

From table 1 it follows that $\operatorname{card}(X(\lambda))=16$ or 20 or 36 . The foregoing proves the theorem.

Table 1. $\operatorname{Card}(X(\lambda)), g=E_{6}$.

[^0]Theorem I. Let $\mathfrak{g}=E_{0}$ and let $\boldsymbol{g}_{\sigma}=E$ II. Suppose

$$
\lambda=\sum_{j=1}^{6} \lambda_{j} \omega_{j}
$$

is the highest weight of arbitrary representation $\varphi: E_{6} \rightarrow \mathfrak{s l}(V)$,

$$
X(\lambda)=\left\{\beta \mid \beta \in R^{+},\left(\beta, \frac{1}{2}(\lambda+\rho)\right) \in \mathbb{Z}\right\} \quad C_{\lambda}=\prod_{\beta \in X(\lambda)}\left(\beta, \frac{1}{2}(\lambda+\rho)\right)
$$

If $\operatorname{card}(X(\lambda))=16$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{9} 3^{3} 5} \tag{7}
\end{equation*}
$$

if $\operatorname{card}(X(\lambda))>16$, then $\delta=0$.

4. The case $\mathfrak{g}=E_{6}, \mathfrak{g}_{\sigma}=E$ III

The automorphism $\theta=\exp (\operatorname{ad} H)$ is defined by the elements $\frac{1}{2} H_{1}$ or $\frac{1}{2} H_{6}$.
Lemma 2. Let

$$
\lambda=\sum_{j=1}^{6} \lambda_{j} \omega_{j}
$$

be the highest weight of the representation $\varphi: E_{6} \rightarrow \mathfrak{s l}(V)$ and let χ_{λ} be the character of this representation. Then $\left|\chi_{\lambda}\left(\frac{1}{2} H_{1}\right)\right|=\left|\chi_{\lambda}\left(\frac{1}{2} H_{6}\right)\right|=|\delta|=\left|\chi_{\lambda}\left(\frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}\right)\right)\right|$.

Proof.

$$
\begin{aligned}
\frac{1}{2} H_{1} & \equiv \frac{1}{2} H_{1}+\sum_{j=2}^{6} H_{j}=\frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}+\left[\begin{array}{llrr}
5 & 10 & 14 & 10 \\
& 5 & 5
\end{array}\right]\right) \\
& \equiv \frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}+\left(\begin{array}{lllll}
1 & 2 & 2 & 2 & 1 \\
& 1 &
\end{array}\right)\right) \\
& \equiv \frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}\right)\left(\bmod P\left(R^{\vee}\right)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{2} H_{6} & \equiv \frac{1}{2} H_{6}+\sum_{j=1}^{6} H_{j}=\frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}+\left(\begin{array}{rrrr}
7 & 13 & 18 & 13 \\
& 7 & 9 &
\end{array}\right)\right) \\
& \equiv \frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}+\left(\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
& 1 &
\end{array}\right)\right) \\
& \equiv \frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}\right)\left(\bmod P\left(R^{\vee}\right)\right) .
\end{aligned}
$$

So

$$
\left|\chi_{\lambda}\left(\frac{1}{2} H_{1}\right)\right|=\left|\chi_{\lambda}\left(\frac{1}{2}\left(\rho+\omega_{2}+\omega_{6}\right)\right)\right|=\left|x_{\lambda}\left(\frac{1}{2} H_{6}\right)\right|
$$

and lemma 2 is proved.

From lemma 2 it follows that

Then keeping only the lowest degree terms when $t \rightarrow 1$ we find

$$
\left|A_{\rho}\left(\frac{1}{2} t\left(\rho+\omega_{2}+\omega_{6}\right)\right)\right| \simeq 2^{36} 2^{11} 3^{5} 5^{2} 7(\pi(t-1))^{20}
$$

Hence from (6) and (8) we derive

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{C_{\lambda}(\pi(t-1))^{\operatorname{card}(X(\lambda))}}{2^{11} 3^{5} 5^{2} 7(\pi(t-1))^{20}} \chi_{\omega_{2}+\omega_{6}}\left(\frac{1}{2} t(\lambda+\rho)\right)\right| \tag{9}
\end{equation*}
$$

Consider a representation

of the algebra E_{6}. By $\operatorname{dim} V$ denote the dimension of this representation. Then $\operatorname{dim} V=$ 1728. $\eta_{0}=\omega_{2}+\omega_{6}=\frac{1}{6}(9,1,1,1,1,1,-5,-9)$ is the highest weight vector of this representation, where the vector is defined by its components in the basis $\varepsilon_{1}, \ldots, \varepsilon_{8}$ (3). η_{0} and two other vectors $\eta_{1}=\frac{1}{3}(3,2,2,-1,-1,-1,-1,-3)$ and $\eta_{2}=$ $\frac{1}{6}(3,1,1,1,1,1,-5,-3)$ are the dominant weights of the representation. Using the results of [8] we find all weight vectors of this representation. They are $w\left(\eta_{t}\right)$, where $w \in W, i=0,1,2$. By $\operatorname{dim} V^{\eta_{t}}, i=0,1,2$ denote the weight multiplicities. Then $\operatorname{dim} V^{\eta_{0}}=1, \operatorname{dim} V^{n_{1}}=4, \operatorname{dim} V^{\eta_{2}}=16$. We have used the coset decomposition of the Weyl group W with respect to the Weyl group $W_{\operatorname{sut}(2) \times s u(6)}$ of a classical regular subalgebra $\mathfrak{s u}(2) \times \mathfrak{s u}(6)$ embedded naturally in E_{0} [8]. Namely,

where $\alpha_{0}=\varepsilon_{1}-\varepsilon_{8}$ and the root α_{2} is deleted. For any E_{6}-dominant weight vector η_{i} we find all $A_{1}+A_{5}$-dominant vectors $w\left(\eta_{2}\right)$ and the orders of their $W_{\mathrm{sa}(2) \times s u(6)}$ orbits. The results are collected in table 2 . From table 2 it follows that $\left|\chi_{\omega_{2}+\omega_{6}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|=64$ for any λ such that $\operatorname{card}(X(\lambda))=20$. In fact

$$
\begin{align*}
\left|\chi_{\omega_{2}+\omega_{6}}\left(\frac{1}{2}(\lambda+\rho)\right)\right| & =\left|\sum_{\mu i} \exp \left(2 \pi \sqrt{-1}\left(\mu_{i}, \frac{1}{2}(\lambda+\rho)\right)\right) \operatorname{dim} V^{\mu_{i}}\right| \\
& =\left|\sum_{\mu i} \exp \left(\pi \sqrt{-1}\left(\mu_{i}-\eta_{0}, \lambda+\rho\right)\right) \operatorname{dim} V^{\mu}\right| \tag{10}
\end{align*}
$$

where the sum in (10) embraces all weights μ_{i} from table 2 . But

$$
\lambda+\rho=\sum_{j=1}^{6}\left(\lambda_{j}+1\right) \omega_{j}
$$

Table 2. Representation $\begin{array}{ccc}\begin{array}{c}0 \\ 0\end{array}-0-0 \quad 0 & 1 \\ 0-0-0 \\ 0 & 1\end{array}$ of E_{0}.

$\eta_{0}=\frac{1}{6}(9,1,1,1,1,1,-5,-9) \mathrm{drm} V^{7_{0}}=1$			$\begin{aligned} & \eta_{1}=\frac{1}{6}(3,2,2,-1,-1,-1,-1,-3), \\ & \operatorname{dim} V^{n}=4 \end{aligned}$	
	$\frac{1}{6}(9,1,1,1.1,1,-5,-9)$	12	$\frac{1}{3}(3,2,2,-1,-1,-1,-1,-3)$	30
	$\frac{1}{3}(3,2,2,2,-1,-1,-4,-3)$	120	$\frac{1}{6}(3,7,1,1,1,-5,-5,-3)$	120
$w(\eta)$	$\frac{1}{6}(3,7,7,1,-5,-5,-5,-3)$	120	$\frac{1}{3}(0,2,2,2,-1,-1,-4,0)$	60
	$\frac{1}{6}(3,7,1,1,1,1,-11,-3)$	60	$\frac{1}{3}(0,5,-1,-1,-1,-1,-1,0)$	6
	$\frac{1}{3}(0,5,2,-1,-1,-1,-4,0)$	120		
$\eta_{2}=\frac{1}{6}(3,1,1,1,1,1,-5,-3), \operatorname{dim} V^{n=}=16$				
$w(\eta)$	$\frac{1}{6}(3,1,1,1,1,1,-5,-3)$	12	$\frac{1}{3}(0,2,2,-1,-1,-1,-1,0)$	15

The vectors $\eta_{i}, i=0,1,2$ are E_{6}-dominant. The vectors $w\left(\eta_{t}\right)$ are $A_{t}+A_{s}$ dominant.
and

$$
\mu_{\imath}-\eta_{0}=\sum_{j=1}^{6} n_{i j} \alpha_{j}
$$

where $n_{i j} \in \mathbb{Z}$ and $\alpha_{j} \in \Pi, j=1, \ldots, 6$. Hence

$$
\exp \left(\pi \sqrt{-1}\left(\mu_{t}-\eta_{0}, \lambda+\rho\right)\right)=\exp \left(\pi \sqrt{-1} \sum_{j=1}^{6} n_{\iota}(\lambda,+1)\right)
$$

Thus the sum in (10) will not change if

$$
\lambda=\sum_{j=1}^{6} \lambda_{j} \omega_{j}
$$

is replaced by

$$
\bar{\lambda}=\sum_{j=1}^{6} \bar{\lambda}_{j} \omega_{j}
$$

where $\bar{\lambda}_{j}=1$ if λ_{l} is odd and $\bar{\lambda}_{f}=0$ if λ_{l} is even. Hence it is sufficient to consider a finite number of the representations to evaluate

$$
\left|\chi_{\omega_{2}+\omega_{6}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|
$$

For any λ such that $\operatorname{card}(X(\lambda))=20$ we derive, using straightforward calculation, that

$$
\left|\chi_{\omega_{2}+\omega_{6}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|=64
$$

The foregoing proves the theorem.
Theorem 2. Suppose $\mathbf{g}=E_{6}, \mathbf{g}_{\sigma}=E$ III, and

$$
\lambda=\sum_{j=1}^{6} \lambda_{j} \omega_{j}
$$

is the highest weight of arbitrary representation $\varphi: E_{6} \rightarrow \mathfrak{s l}(V)$.
If $\operatorname{card}(X(\lambda))=20$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{5} 3^{5} 5^{2} 7} \tag{11}
\end{equation*}
$$

If $\operatorname{card}(X(\lambda))=36$, then $\delta=0$.
If $\operatorname{card}(X(\lambda))=16$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{11} 3^{5} 5^{2} 7} \frac{1}{4!}\left|\sum_{\mu_{1}} \cos \left(\pi\left(\mu_{i}-\eta_{0}, \lambda+\rho\right)\right)\left(\mu_{i}, \lambda+\rho\right)^{4} \operatorname{dim} V^{\mu_{i}}\right| \tag{12}
\end{equation*}
$$

where the sum in (12) embraces all weights $\mu_{\text {, from table } 2 \text {, and } \eta_{0}=}^{=}$ $\frac{1}{6}(9,1,1,1,1,1,-5,-9)$ is the highest weight of the representation

where

$$
\begin{aligned}
& h_{1}=\frac{1}{6}\left(3 \lambda_{1}+6 \lambda_{2}+6 \lambda_{3}+9 \lambda_{4}+6 \lambda_{5}+3 \lambda_{6}+33\right) \\
& h_{2}=\frac{1}{6}\left(5 \lambda_{1}+4 \lambda_{3}+3 \lambda_{4}+2 \lambda_{5}+\lambda_{6}+15\right) \\
& h_{3}=\frac{1}{6}\left(-\lambda_{1}+4 \lambda_{3}+3 \lambda_{4}+2 \lambda_{5}+\lambda_{6}+9\right) \\
& h_{4}=\frac{1}{6}\left(-\lambda_{1}-2 \lambda_{3}+3 \lambda_{4}+2 \lambda_{5}+\lambda_{6}+3\right) \\
& h_{5}=\frac{1}{6}\left(-\lambda_{1}-2 \lambda_{3}-3 \lambda_{4}+2 \lambda_{5}+\lambda_{6}-3\right) \\
& h_{6}=\frac{1}{6}\left(-\lambda_{1}-2 \lambda_{3}-3 \lambda_{4}-4 \lambda_{5}+\lambda_{6}-9\right) \\
& h_{7}=\frac{1}{6}\left(-\lambda_{1}-2 \lambda_{3}-3 \lambda_{4}-4 \lambda_{5}-5 \lambda_{6}-15\right) \\
& h_{8}=\frac{1}{6}\left(-3 \lambda_{1}-6 \lambda_{2}-6 \lambda_{3}-9 \lambda_{4}-6 \lambda_{5}-3 \lambda_{6}-33\right)
\end{aligned}
$$

Using formulas (7), (11) and (12) it is possible to find $|\delta|$ for any representation φ. The values of $|\delta|$ for some representations are collected in table 3.

5. The case $\mathfrak{g}=E_{7}$

The Dynkin diagram for E_{7} is

We shall take the roots realization from [8], that is

$$
\begin{array}{ll}
a_{1}=\varepsilon_{7}-\varepsilon_{8} & a_{2}=\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}+\varepsilon_{8}\right) \quad a_{3}=\varepsilon_{6}-\varepsilon_{7} \tag{13}\\
a_{4}=\varepsilon_{5}-\varepsilon_{6} & a_{5}=\varepsilon_{4}-\varepsilon_{5} \quad a_{6}=\varepsilon_{3}-\varepsilon_{4} \quad a_{7}=\varepsilon_{2}-\varepsilon_{3} .
\end{array}
$$

Table 3. The values of $|\delta|, \mathfrak{g}=E_{6}$.

By symbol

$$
a c \underset{b}{d} e f g
$$

denote' the root $\beta=a \alpha_{1}+b a_{2}+c a_{3}+d a_{4}+e a_{5}+f a_{6}+g a_{7}$. Suppose R^{+}is a set of positive roots. Then
$R^{+}=\left\{\varepsilon_{1}-\varepsilon_{j}\{1 \leqslant i<j \leqslant 8\}\right.$

$$
\cup\left\{\left.\frac{1}{2}\left(\varepsilon_{1} \pm \varepsilon_{2} \pm \varepsilon_{3} \pm \varepsilon_{4} \pm \varepsilon_{5} \pm \varepsilon_{6} \pm \varepsilon_{7} \pm \varepsilon_{8}\right) \right\rvert\, 3 "+" \text { sign and } 4 "-" \operatorname{sign}\right\} .
$$

By symbol

denote the representation of the highest weight

$$
\lambda=\sum_{j=1}^{7} \lambda_{j} \omega_{j} .
$$

Let \mathfrak{g}_{σ} be any real form of the algebra \mathfrak{g} and let $\frac{1}{2} H_{i_{0}}$ generate automorphism $\theta=$ $\exp (\operatorname{ad} H)$. Discussing this in the same way as previously we reduce the element $\frac{1}{2} H_{i_{0}}$

Table 4. The elements $\frac{1}{2} H_{10}\left(\bmod P\left(R^{\prime \prime}\right)\right)$.

\mathbf{g}	E_{7}		E_{8}		
\mathbf{g}_{a}	$E \mathrm{~V}$	$E \mathrm{VI}$	$E \mathrm{VII}$	E VIII	$E \mathrm{IX}$
$\frac{1}{2} H_{10}$	$\frac{1}{2} H_{2}$	$\frac{1}{2} H_{1}$	$\frac{1}{2} H_{7}$	$\frac{1}{2} H_{1}$	$\frac{1}{2} H_{8}$
$\frac{1}{2} H_{10}\left(\bmod P\left(R^{\vee}\right)\right)$	$\frac{1}{2} \rho$	$\frac{1}{2}\left(\rho+\omega_{2}\right)$	$\frac{1}{2}\left(\rho+\omega_{1}+\omega_{3}\right)$	$\frac{1}{2} \rho$	$\frac{1}{2}\left(\rho+\omega_{1}+\omega_{3}\right)$

to $\frac{1}{2} H_{i 0}\left(\bmod P\left(R^{v}\right)\right)$ in the form $\frac{1}{2}\left(\rho+\eta_{0}\right)$. The element η_{0} may or may not be zero. The results are collected in table 4.

Let $\mathfrak{g}_{\sigma}=E \mathrm{~V}$. Then from (2) we derive, using table 4, that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right| \tag{14}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\left|A_{\rho}\left(\frac{1}{2} t \rho\right)\right| \simeq 2^{63} 2^{9} 3^{7} 5^{3} 7(\pi(t-1))^{28} \quad \text { when } t \rightarrow 1 \tag{15}
\end{equation*}
$$

The sign " $\simeq \ldots t \rightarrow 1$ " in (15) and everywhere below means that we keep only the lowest degree terms when $t \rightarrow 1$ for a function considered. Thus

$$
\begin{equation*}
\left|A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)\right| \simeq 2^{63} C_{\lambda}(\pi(t-1))^{\operatorname{card}(X(\lambda))} \quad \text { when } t \rightarrow 1 \tag{16}
\end{equation*}
$$

The limit in (14) depends on the value of $\operatorname{card}(X(\lambda))$. From table 5 it follows that $\operatorname{card}(X(\lambda))=28$ or 31 or 36 or 63 . The foregoing proves the theorem.

Table 5. $\operatorname{Card}(X(\lambda)), \boldsymbol{g}=E_{7}$,

Representation $\begin{array}{lllllllll} & \lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & \lambda_{7} \\ & & \lambda_{2}\end{array}$	$\operatorname{Card}(X)$
	28
 	31
	36
$\begin{array}{lllllllllllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{0} & 0 \\ & & \lambda_{2}\end{array}$	63

Symbol $e(o)$ in the column λ_{i} denotes an even (odd) λ_{1}

Theorem 3. Let $\mathfrak{g}=E_{7}$ and let $\mathbf{g}_{\sigma}=E V$. Suppose

$$
\lambda=\sum_{j=1}^{7} \lambda_{j} \omega_{j}
$$

is the highest weight of arbitrary representation $\varphi: E_{7} \rightarrow \mathfrak{s l}(V)$.
If $\operatorname{card}(X(\lambda))=28$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{9} 3^{7} 5^{3} 7} \tag{17}
\end{equation*}
$$

If $\operatorname{card}(X(\lambda))>28$, then $\delta=0$.
Let $\mathbf{g}_{\sigma}=E$ VI. Then similarly

$$
\begin{align*}
\left.|\delta|=\left\lvert\, \lim _{t \rightarrow 1} \frac{A_{\rho+\omega_{2}}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t\right.}\left(\rho+\omega_{2}\right)\right.\right) \tag{18}
\end{align*}\left|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t\left(\rho+\omega_{2}\right)\right)} \chi_{\omega_{2}}\left(\frac{1}{2} t(\lambda+\rho)\right)\right|,\right.
$$

Furthermore from (18) and (16) it follows that

$$
\begin{equation*}
|\delta|=\left|\lim _{t \rightarrow 1} \frac{C_{\rho}(\pi(t-1))^{\operatorname{card}(X(\lambda))}}{2^{20} 3^{9} 5^{4} 7^{2}(\pi(t-1))^{31}} \chi_{\omega_{2}\left(\frac{1}{2} t(\lambda+\rho)\right)}\right| \tag{19}
\end{equation*}
$$

Consider a representation

of the algebra E_{7}. Using the results of [8] we find all weight vectors of this representation. We have used the coset decomposition of the Weyl group W with respect to the Weyl group $W_{\text {su(8) }}$ of a classical regular subalgebra $\mathfrak{s u}(8)$ embedded naturally in E_{7} [8]. Namely

where $\alpha_{0}=\varepsilon_{1}-\varepsilon_{2}$ and the root α_{2} is deleted. For any E_{7}-dominant weight vector η_{i} we find all A_{7}-dominant vectors $w\left(\eta_{i}\right)$ and the order of their $W_{s u(8)}$ orbits. The results are collected in table 6. Let $\operatorname{card}(X(\lambda))=31$. Then from table 6 it follows that $\left|\chi_{\omega_{2}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|=16$.

Table 6. Representation $\begin{array}{cccc}000 & 0 & 0 & 0 \\ 0-0-0-0-0-0 \\ 1 & 1\end{array}$ of E_{7}.

$\begin{aligned} & \eta_{0}=\frac{1}{4}(7,-1,-1,-1,-1,-1,-1,-1) \\ & \operatorname{dim} V^{n_{0}}=1 \end{aligned}$		$\begin{aligned} & \eta_{1}=\frac{1}{4}(3,3,-1,-1,-1,-1,-1,-1) \\ & \operatorname{dim} V^{n_{1}}=6 \end{aligned}$	
$\frac{1}{4}(7,-1,-1,-1,-1,-1,-1,-1)$	8	$\frac{1}{4}(3,3,-1,-1,-1,-1,-1,-1)$	28
$\frac{1}{4}(1,1,1,1.1,1,1,-7)$	8	$\frac{1}{4}(\mathrm{l}, 1,1,1,1,1,-3,-3)$	28
$w(\eta) \frac{1}{4}(5,1,1,1.1,-3,-3,-3)$	280		
$\frac{1}{4}(3,3,3,-1,-1,-1,-1,-5)$	280		

The foregoing proves the theorem.
Theorem 4. Suppose $\mathfrak{g}=E_{7}, \mathfrak{g}_{\sigma}=E \mathrm{VI}$ and $\lambda=\Sigma_{j=1}^{7} \lambda_{,} \omega_{j}$ is the highest weight of arbitrary representation $\varphi: E_{7} \rightarrow 5!(V)$.

If $\operatorname{card}(X(\lambda))=31$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{16} 3^{9} 5^{4} 7^{2}} \tag{20}
\end{equation*}
$$

If $\operatorname{card}(X(\lambda))=36$ or 63 , then $\delta=0$.
If $\operatorname{card}(X(\lambda))=28$, then

$$
\begin{equation*}
|\delta|=\frac{C_{\lambda}}{2^{20} 3^{9} 5^{4} 7^{2}} \frac{1}{3!}\left|\sum_{\mu_{i}} \cos \left(\pi\left(\mu_{i}-\eta_{0}, \lambda+\rho\right)\right)\left(\mu_{i}, \lambda+\rho\right)^{3} \operatorname{dim} V^{\mu_{i}}\right| \tag{21}
\end{equation*}
$$

where the sum in (21) embraces all weights μ_{2} from table 6 , and $\eta_{0}=$ $\frac{1}{4}(7,-1,-1,-1,-1,-1,-1,-1)$ is the highest weight of the representation

$$
\lambda+\rho=\sum_{j=1}^{8} h_{j} \varepsilon_{j}
$$

where

$$
\begin{aligned}
& h_{1}=\frac{1}{4}\left(4 \lambda_{1}+7 \lambda_{2}+8 \lambda_{3}+12 \lambda_{4}+9 \lambda_{5}+6 \lambda_{6}+3 \lambda_{7}+49\right) \\
& h_{2}=\frac{1}{4}\left(-\lambda_{2}+\lambda_{5}+2 \lambda_{6}+3 \lambda_{7}+5\right) \\
& h_{3}=\frac{1}{4}\left(-\lambda_{2}+\lambda_{5}+2 \lambda_{6}-\lambda_{7}+1\right) \\
& h_{4}=\frac{1}{4}\left(-\lambda_{2}+\lambda_{5}-2 \lambda_{6}-\lambda_{7}-3\right) \\
& h_{5}=\frac{1}{4}\left(-\lambda_{2}-3 \lambda_{5}-2 \lambda_{6}-\lambda_{7}-7\right) \\
& h_{6}=\frac{1}{4}\left(-\lambda_{2}-4 \lambda_{4}-3 \lambda_{5}-2 \lambda_{6}-\lambda_{7}-11\right) \\
& h_{7}=\frac{1}{4}\left(-\lambda_{2}-4 \lambda_{3}-4 \lambda_{4}-3 \lambda_{5}-2 \lambda_{6}-\lambda_{7}-15\right) \\
& h_{8}=\frac{1}{4}\left(-4 \lambda_{1}-\lambda_{2}-4 \lambda_{3}-4 \lambda_{4}-3 \lambda_{5}-2 \lambda_{6}-\lambda_{7}-19\right) .
\end{aligned}
$$

Let $\boldsymbol{g}_{\sigma}=E$ VII. Then similarly

$$
|\delta|=\left|\lim _{t \rightarrow 1} \frac{C_{\lambda}(\pi(t-1))^{\operatorname{card}(x(\lambda))}}{2^{25} 3^{10} 5^{5} 7^{3} 11(\pi(t-1))^{36}} \chi_{\omega_{1}+\omega_{3}}\left(\frac{1}{2} t(\lambda+\rho)\right)\right|
$$

Consider a representation

of the algebra E_{7}. Discussing this as in the previous cases we find all weight vectors of this representation. Furthermore if $\operatorname{card}(X(\lambda))=36$ then $\left|\chi_{\omega_{1}+\omega_{3}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|=4096$. The foregoing proves the theorem.

Theorem 5. Suppose $\mathfrak{g}=E_{7}, \boldsymbol{g}_{c}=E$ VII, and

$$
\lambda=\sum_{j=1}^{7} \lambda_{j} \omega_{j}
$$

is the highest weight of arbitrary representation $\varphi: E_{7} \rightarrow \boldsymbol{s l}(V)$.
If $\operatorname{card}(X(\lambda))=36$, then

$$
|\delta|=\frac{C_{\lambda}}{2^{13} 3^{10} 5^{5} 7^{3} 11}
$$

If $\operatorname{card}(X(\lambda))=31$ or 63 , then $\delta=0$.
If $\operatorname{card}(X(\lambda))=28$, then
$|\delta|=\frac{C_{\lambda}}{2^{25} 3^{10} 5^{5} 7^{3} 11} \frac{1}{8!}\left|\sum_{\mu_{1}} \cos \left(\pi\left(\mu_{i}-\eta_{0}, \lambda+\rho\right)\right)\left(\mu_{t}, \lambda+\rho\right)^{8} \operatorname{dim} V^{\mu_{t}}\right|$

Table 7. The values of $|\delta|, \mathfrak{g}=E_{7}$.

Representation				Representation				
$\lambda_{1} \lambda_{3} \lambda_{4} \lambda_{5} \lambda_{6} \lambda_{7}{ }_{0} 0-0-0-0-0$	$\|8\|$	$\|\delta\|$	$\|\delta\|$	$\begin{aligned} & \lambda_{1} \lambda_{3} \lambda_{4} \lambda_{5} \lambda_{6} \lambda_{7} \\ & 0-0-0-0-0-0 \end{aligned}$	$\|\delta\|$	$\|\delta\|$	\| 8	
$0-0-0-0-0-0$	for	for	for	$0-0-0-0-0-0$	for	for	for	
$0 \lambda_{2}$	EV	EVI	$E \mathrm{VII}$	$0 \lambda_{2}$	EV	EVI	E VII	
100000	7	5	25	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$	0	8	0	
$0-0-0-0-0-0$				$0-0-0-0-0-0$				
1				1				
00				00				
$\operatorname{dim} V=133$				$\operatorname{dim} V=56$				
0110000	35	59	221	0000000	0	16	0	
$0-0-0-0-0-0$				$0-0-0-0-0-0$				
I				1				
00				01				
$\operatorname{dim} V=8645$				$\operatorname{dim} V=912$				
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0\end{array}$	350	330	350	200000	63	75	351	
$0-0-0-0-0-0$				$0-0-0-0-0-0$				
1				1				
00				00				
$\operatorname{dim} V=365750$				$\operatorname{dim} V=7371$				
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}$	0	144	0	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 2\end{array}$	21	55	53	
$0-0-0-0-0-0$				$0-0-0-0-0-0$				
1				1				
00				00				
$\operatorname{dim} V=27664$				$\operatorname{dim} V=1463$				
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}$	27	3	27					
$0-0-0-0-0-0$								
1								
00								
$\operatorname{dim} V=1539$								

where the sum in (22) embraces all weight vectors $\mu_{\text {, of }}$ of the representation

$$
\begin{aligned}
& \begin{array}{l}
1 \\
0 \\
0
\end{array} \frac{1}{0}-0 \quad 0 \quad 0 \quad 0 \\
& \quad 1 \\
& \quad 0 \\
& 0
\end{aligned}
$$

the elements $h_{i}, i=1, \ldots, 8$ have the same meaning as in theorem 4. The values of $|\delta|$ for some representations are collected in table 7 .

6. The case $\mathfrak{g}=E_{8}$

The Dynkin diagram for E_{8} is

We shall take the roots realization from [8], that is

$$
\begin{array}{llll}
a_{1}=\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right) \\
a_{2}=\varepsilon_{7}+\varepsilon_{8} & a_{3}=\varepsilon_{7}-\varepsilon_{8} & a_{4}=\varepsilon_{6}-\varepsilon_{7} & a_{5}=\varepsilon_{5}-\varepsilon_{6} \tag{23}\\
a_{6}=\varepsilon_{4}-\varepsilon_{5} & a_{7}=\varepsilon_{3}-\varepsilon_{4} & a_{8}=\varepsilon_{2}-\varepsilon_{3} .
\end{array}
$$

By symbol

$$
a \underset{b}{d} \operatorname{efgh}
$$

denote the root $\beta=a a_{1}+b a_{2}+c a_{3}+d a_{4}+e a_{5}+f a_{6}+g a_{7}+h a_{8}$. Suppose R^{+}is a set of positive roots. Then

$$
\begin{aligned}
R^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid\right. & 1 \leqslant i\langle j \leqslant 8\} \\
& \cup\left\{\left.\frac{1}{2}\left(\varepsilon_{1} \pm \varepsilon_{2} \pm \varepsilon_{3} \pm \varepsilon_{4} \pm \varepsilon_{5} \pm \varepsilon_{6} \pm \varepsilon_{7} \pm \varepsilon_{8}\right) \right\rvert\, \text { even numb. of "-" signs }\right\} .
\end{aligned}
$$

By symbol

denote the representation with the highest weight

$$
\lambda=\sum_{j=1}^{8} \lambda_{j} \omega_{j} .
$$

Let $\mathbf{g}_{\sigma}=E$ VIII. Then from (2) we find, using table 4, that

$$
|\delta|=\left|\lim _{t \rightarrow 1} \frac{A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)}{A_{\rho}\left(\frac{1}{2} t \rho\right)}\right| .
$$

Table 8. $\operatorname{Card}(X(\lambda)), \mathfrak{g}=E_{\mathrm{F}}$.

Representation $\begin{array}{lllllll} & \lambda_{4} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & \lambda_{7} \\ & \lambda_{2}\end{array}$	$\operatorname{Card}(X(\lambda))$
	56
λ_{1} λ_{3} λ_{4} λ_{5} λ_{6} 0$e_{\text {, where }}^{\lambda_{1}} \begin{array}{llll}\lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} \\ \lambda_{2} & & \lambda_{21} \\ & & \text { from table } 1\end{array}$	
	64
$\begin{array}{llllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & e \\ a\end{array}$, where $\begin{array}{llllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} \in S_{21} \\ \lambda_{2} & \text { from table } 1\end{array}$ λ_{2}	
$\begin{array}{llllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & 0\end{array}$ a where $\begin{array}{llll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5}\end{array} \lambda_{6} \in S_{22}$ from table : λ_{2}	
$\begin{array}{llllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & e \\ & & \lambda_{2}\end{array}$, where $\begin{array}{lllll}\lambda_{1} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} \\ \lambda_{2}\end{array} \quad \begin{array}{lll} & \lambda_{31}\end{array}$ from table 1	
	120

Symbols $e(0, a)$ have the same meaning as in tables $1,5,8$.

Furthermore

$$
\begin{aligned}
& \left|A_{\rho}\left(\frac{1}{2} t \rho\right)\right| \simeq 2^{120} 2^{41} 3^{19} 5^{8} 7^{5} 11^{2} 13(\pi(t-1))^{56} \\
& \left|A_{\rho}\left(\frac{1}{2} t(\lambda+\rho)\right)\right| \simeq 2^{120} C_{\rho}(\pi(t-1))^{\text {card }\left(X_{4}(\lambda)\right)} \quad \text { when } \quad t \rightarrow 1 .
\end{aligned}
$$

The foregoing proves the theorem.
Theorem 6. Suppose $\mathfrak{g}=E_{8}, \mathfrak{g}_{\sigma}=E$ VIII, and

$$
\lambda=\sum_{j=1}^{8} \lambda_{j} \omega_{j}
$$

is the highest weight of arbitrary representation $\varphi: E \rightarrow \mathfrak{s l}(V)$.
If $\operatorname{card}(X(\lambda))=56$, then

$$
|\delta|=\frac{C_{\lambda}}{2^{41} 3^{19} 5^{8} 7^{5} 11^{2} 13} .
$$

If $\operatorname{card}(X(\lambda))\rangle 56$, then $\delta=0$, where $\operatorname{card}(X(\lambda))$ must be taken from table 8.

Let $\mathfrak{g}_{\sigma}=E$ IX. Then similarly

$$
|\delta|=\left|\lim _{t \rightarrow 1} \frac{C_{\lambda}(\pi(t-1))^{\operatorname{card}(X(\lambda))}}{2^{50} 3^{22} 5^{10} 7^{6} 11^{3} 13^{2} 17(\pi(t-1))^{64}} \chi_{\omega_{1}+\omega_{3}}\left(\frac{1}{2} t(\lambda+\rho)\right)\right| .
$$

Consider a representation

of the algebra E_{8}. Discussing this as in the previous cases we find all weight vectors of this representation. Furthermore if $\operatorname{card}(X(\lambda))=64$, then $\left|\chi_{\omega_{1}+\omega_{3}}\left(\frac{1}{2}(\lambda+\rho)\right)\right|=2^{14}$. The foregoing proves the theorem.

Theorem 7. Suppose $\mathfrak{g}=E_{8}, \mathfrak{g}_{\sigma}=E \mathrm{IX}$, and

$$
\lambda=\sum_{j=1}^{8} \lambda_{j} \omega_{j}
$$

is a highest weight of arbitrary representation $\varphi: E_{8} \rightarrow \mathbf{s l}(V)$.
If $\operatorname{card}(X(\lambda))=64$, then

$$
|\delta|=\frac{C_{\lambda}}{2^{36} 3^{22} 5^{10} 7^{6} 11^{3} 13^{2} 17}
$$

If $\operatorname{card}(X(\lambda))=120$, then $\delta=0$.
If $\operatorname{card}(X(\lambda))=56$, then

$$
|\delta|=\frac{C_{\lambda}}{2^{50} 3^{22} 5^{10} 7^{6} 11^{3} 13^{2} 17} \frac{1}{8!}\left|\sum_{\mu_{1}} \cos \left(\pi\left(\mu_{1}-\eta_{0}, \lambda+\rho\right)\right)\left(\mu_{1}, \lambda+\rho\right)^{8} \operatorname{dim} V^{\mu_{i}}\right|
$$

where the sum embraces all weight vectors μ_{i} of the representation

$$
\begin{aligned}
& 1 \quad \begin{array}{l}
1 \\
0-0-0-0-0-0 \\
0-0-0
\end{array} \\
& \quad 00 \\
& \eta_{0}=\frac{1}{2}(11,1,1,1,1,1,1,-1) \quad \lambda+\rho=\sum_{j=1}^{8} h_{j} \varepsilon_{j} \\
& h_{1}=\frac{1}{2}\left(4 \lambda_{1}+5 \lambda_{2}+7 \lambda_{3}+10 \lambda_{4}+8 \lambda_{5}+6 \lambda_{6}+4 \lambda_{7}+2 \lambda_{8}+46\right) \\
& h_{2}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+2 \lambda_{6}+2 \lambda_{7}+2 \lambda_{8}+12\right) \\
& h_{3}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+2 \lambda_{6}+2 \lambda_{7}+10\right) \\
& h_{4}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+2 \lambda_{6}+8\right) \quad h_{5}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2 \lambda_{4}+2 \lambda_{5}+6\right) \\
& h_{6}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2 \lambda_{4}+4\right) \quad h_{7}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}+2\right) \quad \quad h_{8}=\frac{1}{2}\left(\lambda_{2}-\lambda_{3}\right) .
\end{aligned}
$$

Table 9. The values of $|\delta|, \mathrm{g}=E_{8}$.

Representation			Representation			
	\| 8	for EVIII	$\begin{aligned} & \|\delta\| \\ & \text { for } \\ & E \text { IX } \end{aligned}$		$\|\delta\|$ for E VIII	$\|\delta\|$ for EIX
$\begin{array}{ccccccc} \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & -0 & -0 & -0 & - & -0 & -0 \end{array}$	8	24	$\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & -0 & -0 & -0 & -0 \end{array}$	35	3	
$\begin{gathered} 1 \\ 0 \\ \operatorname{dim} \vdash^{\prime}=248 \end{gathered}$			$\begin{gathered} 00 \\ \operatorname{dim} V=3875 \end{gathered}$			
$\begin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -0 & -0 & -0 & -0 & -0 & 0 \end{array}$	41888	12320	$\begin{array}{lllllll} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & - & -0 & -0 & -0 & - & -0 \end{array}$	960	2496	
$\begin{gathered} 1 \\ 00 \\ \operatorname{dim} V=6899079264 \end{gathered}$			$\begin{gathered} 1 \\ 00 \\ \operatorname{dim} V=6696000 \end{gathered}$			
$\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -0 & -0 & -0 & -0 & -0 & -0 \end{array}$	3094	17290	$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -0 & -0 & -0 & -0 & -0 & -0 \end{array}$	84	140	
$\begin{gathered} 1 \\ 00 \\ \operatorname{dim} V=146325270 \end{gathered}$			$\begin{gathered} 1 \\ 00 \\ \operatorname{dim} V=30380 \end{gathered}$			
$\begin{array}{rrrrrrr} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -0 & -0 & -0 & -0 & -0 & -0 \end{array}$	832	1216	$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0 & -0 & -0 & -0 & -0 & -0 \end{array}$	50	494	
1			1			
00			01			
$\operatorname{dim} V^{\prime}=2450240$			$\operatorname{dim} V=147250$			

The values of $|\delta|$ for some representations are collected in table 9 .

Acknowledgments

The author is grateful to Professor B P Komrakov for presenting the problem.

References

[1] Karpelevich F I 1955 Proc. Mosc. Math. Soc. 4 3-1t2
[2] Komrakov B P and Rudy A N 1989 Izvest. Acad. Sct. BSSR. Ser. Fiz. Mat. Navuk 5 27-34
[3] Rudy A N 1992 Izvest. Acad. Sci. Rep Belarus. Ser. Flz. Mat. Navuk 3-4 33-9
[4] Rudy A N 1993 J. Phys. A: Math. Gen. 26 5873-80
[5] Patera J and Sharp R T 1984 J. Math. Phys. 5 2128-31
[6] Goto M and Grosshans F D 1978 Semisimple Lie Algebras (New York and Basel: Dekker)
[7] Burbaki N 1968 Groupes et algebras de Lie (Paris: Hermann) chapters IV-VI
[8] King R C and Al-Qubanchi A 1981 J. Phys A: Math. Gen. 14 51-75

[^0]:
 Symbol a denotes any λ_{i} independent of whether it is even or odd.

